

QSFP-DD 400GE DR4 500m Optical Transceiver Module OM3660DX102

ETSC's OM3660DX102 is a transceiver module designed for 500 m optical communication applications, and it is compliant with QSFP-DD MSA, IEEE 802.3bs protocol and 400GAUI-8 standards. The 425 Gigabit signal is carried over four parallel lanes by one wavelength per lane. This module can convert 8-channel 53.125 Gbit/s electrical data to 4 parallel channels of optical signals, each supporting 106.25 Gbit/s data transmission. Reversely, it can convert 4-channel 106.25 Gbit/s optical signals to 8-channel electrical output data on the receiver side. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

FEATURES

- · QSFP-DD MSA rev 5.1 compliant 802.3bs compliant
- · QSFP-DD-CMIS-rev4p0
- 400GE DR4 Specification compliant
- 8 x 53.125 Gbit/s PAM4 electrical interface (400GAUI-8) Non-hermetic package design
- Maximum power consumption 12 W

- MPO connector
- 425 Gbit/s aggregate bit rate
- Up to 500 m transmission on single mode fiber with FEC
- Operating case temperature: 0°C~70°C Single 3.3 V power supply
- RoHS-2 compliant

APPLICATIONS

• Data center network

Figure 1. Transceiver Block Diagram

ce.

Pin Descriptions

Top side viewed from top

Bottom side viewed from bottom

Figure 2. MSA compliant Connector

Pin	Logic	Symbol	Description	Plug sequence	Notes
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3.3 V Power Supply Receiver	2B	2
				E	etsc

Pin	Logic	Symbol	Description	Plug sequence	Notes
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Non-Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Inverted Data Output	3B	
26		GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3B	
29		VccTx	+3.3 V Power supply transmitter	2B	2
30		Vcc1	+3.3 V Power supply	2B	2
31	LVTTL-I	LPMode	Low Power mode	3B	
32		GND	Ground	1B	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VccRx1	+3.3 V Power supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3

etsc

etsc

Pin	Logic	Symbol	Description	Plug sequence	Notes
50		VS3	Module Vendor Specific 3	ЗA	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	ЗA	
53	CML-O	Rx7n	Receiver Inverted Data Output	ЗA	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	ЗA	
56	CML-O	Rx5n	Receiver Inverted Data Output	ЗA	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-O	Rx6n	Receiver Non-Inverted Data Output	ЗA	
60	CML-O	Rx6p	Receiver Inverted Data Output	ЗA	
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Non-Inverted Data Output	ЗA	
63	CML-O	Rx8p	Receiver Inverted Data Output	ЗA	
64		GND	Ground	1A	1
65		NC	No Connect	ЗA	3
66		Reserved	For Future Use	ЗA	3
67		VccTx1	+3.3 V Power supply	2A	2
68		Vcc2	+3.3 V Power supply	2A	2
69		Re- served/(epps)	Precision Time Protocol(PTP) reference clock input	ЗA	3
70		GND	Ground	1A	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	ЗA	
72	CML-I	Tx7n	Transmitter Inverted Data Input	ЗA	
73		GND	Ground	1A	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	3A	
75	CML-I	Tx5n	Transmitter Inverted Data Input	ЗA	
76		GND	Ground	1A	1

Notes

- 1. QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in the table. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.
- 3. All Vendor Specific, Reserved and No Connect pins may be terminated with 50 Ω to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 k Ω and less than 100 pF.
- 4. Plug Sequence specifies the mating sequence of the host connector and module.

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Тур	Мах	Unit	Notes
Maximum supply voltage	Vcc	-0.3	3.3	3.6	V	
Storage temperature	Ts	-40		85	°C	
Relative humidity	RH	0		85	%	Non-condensing
Damage threshold, each lane	THd	5			dBm	

Operating Environments

Electrical and optical characteristics below are defined under this operating environment, unless otherwise specified.

Parameter	Min	Тур	Мах	Unit	Notes
Supply voltage	3.135	3.3	3.465	V	
Case temperature	0		70	°C	
Data rate, each lane		106.25		Gbit/s	
Data rate accuracy	-100		100	ppm	
Link distance with G.652	2		500	m	

Electrical Characteristics

Parameter	Min	Тур	Мах	Unit	Note
Power dissipation			12	W	
Supply current			3.63	А	
	Receive	r (module input)	·		·
Data rate, each lane		26.5625 ± 100	ppm	GBd	
Overload differential voltage pk-pk	900			mV	
Common mode voltage	-350		2850	mV	
Differential termination resistance mismatch			10	%	At 1 MHz
Differential return loss (SDD11)			Equation (16-1)	dB	OIF-CEI-56G- VSR-PAM4
Common mode to differential mode conversion (SCD11)			Equation (16-3)	dB	OIF-CEI-56G- VSR-PAM4
Stressed input test	See OIF-C	EI-56G-VSR-PAM4	Section 16.3.10.3		
Data rate, each lane		26.5625 ± 100	ppm	GBd	
Overload differential voltage pk-pk	900			mV	
	Transmitte	er (module outpu	ut)		·
Data rate, each lane		26.5625 ± 100	ppm	GBd	
Differential voltage, pk-pk			900	mV	
Common mode voltage (Vcm)	-350		2850	mV	
Common mode noise, RMS			17.5	mV	
Differential termination resistance mismatch			10	%	At 1_MHz

Parameter	Min	Тур	Мах	Unit	Note
Differential return loss (SDD22)			Equation (16-1)	dB	
Common mode to differential mode conversion (SCD22)			Equation (16-3)	dB	
Common mode return loss (SCC22)			-2	dB	From 250 MHz to fb GHz
Transition time	9.5			ps	
Near-end eye width at 10-6 proba-bility (EW6)	0.265			UI	
Near-end eye height at 10-6 prob-ability (EH6)	70			mV	
Far-end eye width at 10-6 proba-bility (EW6)	0.20			UI	
Far-end eye height at 10-6 proba-bility (EH6)	30			mV	
Near-end eye linearity	0.85				

Optical Characteristics

Parameters	Unit	min.	type.	max
	Transmitter			
Data rate, each Lane	GBd		$53.125 \pm 100 \text{ppm}$	
Modulation format			PAM4	
Line wavelengths	nm	1304.5	1311	1317.5
Average launch power, each lane	dBm	-2.9		4
Optical modulation amplitude (OMA), each lane	dBm	-0.8		4.2
Extinction ratio (ER)	dB	3.5		
Side-mode suppression ratio (SMSR)	dB	30		
Launch power in OMA minus TDECQ, each lane	dBm	-2.2		
Transmitter and dispersion eye clo-sure for PAM4, each Lane (TDECQ)	dB			3.4
Optical return loss tolerance	dB			21.4
Transmitter reflectance	dB			-26
Average launch power of OFF trans- mitter, each Lane	dBm			-15
	Receiver			
Data rate, each Lane	GBd		$53.125\pm100~\mathrm{ppm}$	l
Modulation format			PAM4	
Damage threshold, each lane	dBm	5.0		
Line wavelengths	nm	1304.5		1317.5
Average receiver power, each lane	dBm	-5.9		4
Receiver power, each lane (OMA)	dBm			4.2
Receiver sensitivity (OMA outer), each lane (max)	dBm			-4.4
Stressed receiver sensitivity (OMA outer) , each lane (max)	dBm			-1.9
LOS assert	dBm	-15		
LOS de-assert	dBm			-8.4

Parameters	Unit	min.	type.	max		
LOS hysteresis	dB	0.5				
Receiver reflectance	dB			-26		
Receiver						
Stressed eye closure for PAM4 (SECQ), lane under test	dB	0.9		3.4		
OMA outer of each aggressor lane	dBm			4.2		

Notes

1. Receiver sensitivity (OMA outer), each lane (max) is informative and is defined for a transmitter with SECQ of 0.9 dB.

2. Measured with conformance test signal for BER = 2.4 x 10 - 4. A compliant receiver shall have stressed receiver sensitivity (OMA outer), for SECQ values between 0.9 and 3.4 dB.

EEPROM Definitions

Refer to CMIS Rev4.0.

Digital Diagnostic Monitoring Functions

OM3660DX102 supports the I2C-based Diagnostic Monitoring Interface (DMI) defined in document QSFP-DD-CMIS-rev4p0. The host can access real-time performance of transmitter and receiver optical power, temperature, supply voltage and bias current.

	Data address					
Performance Item	Alarm & Warning	Alarm & Warning thresholds	Monitor			
Module temperature	Lowpage 9	Page2h (128-135)	Lowpage (14-15)			
Module voltage	Lowpage 9	Page2h (136-143)	Lowpage (16-17)			
Bias current	Page11h (143-146)	Page2h (184-191)	Page11h (170-177)			
Transmitter optical power	Page11h (139-142)	Page2h (176-183)	Page11h (154-161)			
Receiver optical power	Page11h (149-152)	Page2h (192-199)	Page11h (186-193)			

etsc

Mechanical Specifications

Regulatory Compliance

Feature	Agency	Standard	Performance
	NRTL	UL 62368-1 CAN/CSA C22.2 No. 62368-1 IEC 60825-1 IEC 60825-2	NRTL recognized component for US and CAN
Safety	TUV	EN 62368-1 EN 60825-1 EN 60825-2	TUV certificate
	FDA	U.S. 21 CFR 1040.10 & 1040.11	FDA/CDRH certified with accession number according to Laser Notice 56
Electromagnetic Compatibility	Radiated emissions	EMC Directive 2014/30/EU EN 55032 CISPR 32 FCC rules 47 CFR Part 15 ICES-003 VCCI-CISPR 32 AS/NZS CISPR 32	Class B digital device with a mini- mum - 6dB margin to the limit when tested with a metal enclosure. Final margin may vary depending on system application, good system EMI design practice, ie: suitable metal enclosure and well-bonding, is required to achieve Class B mar- gins at the system level. Tested fre- quency range: 30 MHz to 40 GHz or 5th harmonic (5 times the high- est frequency), whichever is less.
	ESD	EMC Directive 2014/30/EU EN 55035 CISPR 35 IEC/EN 61000-4-2	Withstands discharges of \pm 8 kV contact, \pm 15 kV air.
	Radiated immunity	EMC Directive 2014/30/EU EN 55035 CISPR 35 IEC/EN 61000-4-3	Field strength of 10 V/m from 80 MHz to 6 GHz.
Restriction of Hazardous Sub- stances	RoHS	EU RoHS (2011/65/EU & (EU) 2015/863) & UK RoHS EN IEC 63000:2018 & BS EN IEC 63000:2018	

ESD Design

Normal ESD precautions are required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and otherwise handled in an ESD protected environment utilizing standard grounded benches, floor mats, and wrist straps.

Parameter	Threshold value	Notes
ESD of high-speed pins	1 kV	Human body model
ESD of low-speed pins	2 kV	Human body model
Air discharge during operation	15 kV	
Direct contact discharges to the case	8 kV	

Safety Specification Design

Do not look into fiber end faces without eye protection using an optical meter (such as magnifier and microscope) within 100 mm, unless you ensure that the laser output is disabled. When operating an optical meter, observe the operation requirements.

CAUTION-Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Ordering Information

Part Number	Description
OM3660DX102	QSFP-DD 400GE DR4 500 m Optical Transceiver Module